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Abstract. I t  is shown h e x  t h n  thc Eon-s ta t ionq  ScbrGdinger eqilaiion can be solred 
exactly for two quantum models subject to Dirichlet boundary conditions. One of them is 
a modified problem of a quantum bouncer, i.e. the problem of a particle falling down in 
the gravitational field on a moving (oscillating) platform such as a loudspeaker. The second 
modei is a 'cut-oii osciiiator' with a moving infinite potentiai waii and a time-dependent 
frequency. In both cases exact solutions are given in closed forms, easy to use. Their 
possible applications are also indicated. In each of the models extra coordinate- and 
time-dependent phase factors are generated by moving boundaries in the former case giving 
rise to a non-local effect in quantum mechanics. 

1. Introduction 

An exact solution of the Schrodinger equation with a time-dependent Hamiltonian is 
a very difficult task and can only be performed in very few cases. Those parabolic-type 
partial differential equations constitute a great challenge even for a computer approach. 
This is especially the case when they contain rapidly oscillating time-dependent 
coefficients. This happens, for example, when a particle is bound to move in some 
subspace of the full space and the border of the subspace oscillates according to a 
given function of time, say L(t) .  

The Fermi-Ulam model [ l ,  21 is presumably the first one of this kind. It consists 
of a particle bouncing inside a one-dimensional infinite square well of oscillating width. 
Its classical version, known as a Fermi accelerator, has been proposed in order to 
explain the mechanism in which cosmic particles achieve very high energies. Though 
the model appeared to be too crude to solve the problem of cosmic radiation [3] it 
plays an important role in the theory of quantum chaos [4]. 

Exact solutions of the quantum counterpart of the model have been found [S, 61 
for some functions L ( t )  only. However, a modification of the Fermi accelerator [6] 
can be solved exactly for any function L(1) and its numerical analysis [7] leads to a 
~. numher -. .. . -. of i n t e r e s t i n g  . . . -. .. .. resu!!~, 

Our main motivation for a study of similar models follows from the fact that we 
know very little about the behaviour of quantum systems with time-dependent boundary 
conditions. Possible applications ofthe models to the problems ofthe so-called quantum 
chaos or to optical effects connected with moving mirrors are additionally encouraging. 
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2. Basic equations 

The systems we want to discuss are described by the non-stationary Schrodinger 
equations 

and the time-dependent boundary conditions 

+ ( x = L ( f ) , t ) = * ( x = m ,  t ) = O .  ( 2 )  

These equations are not solvable until the moving boundaries are replaced by fixed 
ones. In the choice of a transformation leading to fixed boundaries one is guided only 
by one's experience and intuition. We take here 

y = x -  U t ) .  (3) 

Thkleads to the replacements 

J2 
-+- a a  a 

J f  J t  Jy J X 2  Jy2 
i- -+-- (4) 

resulting in the new Schrodinger equations 

JJI - h 2 J 2 @  . . J J I  m G ( t ) ( y + L ) J I ( y ,  1 )  ( s a )  

+ m o 2 ( t ) ( y + L ) * * ( Y ,  f )  ( 5 6 )  
J I  2m ay2 

ih-=--+ihL-+ 

subject already to the time-independent boundary conditions 

* ( y = O ,  t )  = * ( y = c o ,  t ) = O .  ( 6 )  

Before specifying the two models in more detail let us note that equations ( 5 )  can 
be simplified if their solutions are guessed to be in the form 

Then, we have 

where the normalization condition reads 
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3. The quantum bouncer and its modification 

This model is described by the equations ( la),  (Sa), ( 7 a ) ,  (Sa) .  When formulated on 
the entire real axis it is known as a problem of a particle moving in the field of an 
homogeneous time-varying force. As such, it can easily he solved with the help of any 
method based on the evolution of a given initial state [S, 91. In the case of the boundary 
conditions (2) the methods seem to be simple to use only when the time and spatial 
coordinates can be separated. 

In order to solve (Sa) let us first note that [ H n (  I , ) ,  Ha( r2)] # 0. The non-commuta- 
tivity of H, with itself at different times is not a serious problem for two cases considered 
below. We can use the following gauge transformations: 

(11) 

If S = S(y, 1) and does not depend on the derivative J/dy, then from (8a )  one obtains 

Q + [ m ( G + i ) y + S ] Q ,  ar 2m 

Use has been made of the well known Baker-Campbell-Hausdorff [lo] formula and 
the relations 

Way, S(Y, 01 = a w a y  

[Pb, 1 ) .  S(Y, f ) l  =2(as/JY)2 
Now the choice of S in the form 

eliminates the ‘scalar potential’ in (12) and the ‘vector potential’ depends only on t. 
Thus, the resulting Hamiltonian in (12) commutes with itself at different times and 
that is why the formal solution of (Sa) reads 

where 

y(r) 5 ( - 1 / m )  J ~ Q(rJ dr, 

and the function Q(r) is defined in (14). 
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A further discussion depends on a choice of the function G(r) in the a-equations. 
It is possible to write (15) and hence the solutions of ( la )  in explicit forms in two 
cases distinguished below. 

3.1. The bouncer 

Let us take G ( t )  = g =constant, with g being the acceleration due to gravity, in all 
a-equations beginning from ( la) .  This case is of a special importance since its classical 
counterparts, both elastic and inelastic, exhibit a variety of solutions from regular to 
chaotic [ 111. 

The quantum case is easily solvable if 

~ ( r )  = ~ , ( t )  = ~ t ~ +  ~ t +  c (17) 

which immediately follows from the inspection of (sa).  A separation of variables leads 
now to an equation for the Airy functions [12] Ai(. . .) and Bi(. . .). 

To fulfil the boundary conditions (6) an acceptable solution of (Sa) has to be in 
the form 

pP,(y, t )=exp - - A n t  Ai -- A n  1 g+2A>O (18) ( t ) [i m(g+2A)F- 

where S=[fi2/2m2(g+2A)]"' and the eigenvalues A. are to he determined from the 
condition 

Ai[ -A,,/m(g+ZA)S] = 0. (19) 

Hence, the exact solution of ( la )  for L ( t )  given in (17) and obeying the conditions 
I', 1145 LllC ,,,La, LVLl,, 
/ L ) ,  L^^ .L̂  C _ ^ I  P^-__ 

with the normalization constants C. being found from (9). 

F,(y,  1 )  defined by 
The solution (20) can also be derived with the help of ( 1 5 ) .  To this end the function 

(21) 

has to be calculated. The simplest way to do that consists in using an integral 
representation for the Airy function 

FJy, I)= e x ~ [ i P ( t ) ~ ~ / J y ~ l  e x ~ [ ~ ( t ) J / J y l A i [ y / S  -Aw/m(g+2A)61 

Ai(z)=- exp[i(fu'+zu)] du  (22) 
2.R (+" _ m  

which is easily derivable from the formula 10.4.32 of [13]. 
Then, expanding the exponentials in (21) and using (22), we get 

Changing the variable of integration in (23) to the new one 

U = U - p ( r ) / S Z  (24) 
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calculating y(i)  for L ( t )  given in (17). using the definition of p ( t )  and then (22), we 

1 ( i  (25) F,,(y, t)=exp ia( t ) - -  Q(f)y exp -- Ant Ai[y/G -An/m(g+2A)S]. 

The functions o ( t )  and Q ( f )  have to be calculated from equations (16) and (14), 
respectively, with L ( t ) = L , ( t )  as defined in (17). Then, using (IS), ( 7 a )  and (3) we 
obtain again (20). 

3.2. The modified bouncer 

The problem of a particle bouncing in the gravitational field can be modified by 
introducing an additional field such that the function G ( t )  in all a-equations is given 

get 
I [ R  

h . 7  
"Y 

G(  t)  = g -  i( i). (26)  
In this case the terms with the variables y and i separate in (8a) for any function L ( f )  
of the class @*. Hence, (Sa) can again be replaced by two equations: that in t is a 
trivial one and that in y leads to the earlier-mentioned equation for the Airy functions. 
Thus, in analogy to ( Z O ) ,  we have 

*,,(x, t ) = D ,  e x p ( g  [ 2 i ( x - L ) + j o z  i2 dt, -2  jot (g-i)Ldt,]}K.(x, i )  

K.(x, t) = exp - - A n t  Ai[(x- L ( t ) ) / A  - AJmgA] 

where A=(h2/2m2g)l", the eigenvalues A m  arezeros ofthe equation Ai(-A,/mgA)=O 
and the normalization constants D. can be obtained from (9). 

Of course, the solution (27) is also derivable from the formal expression (15). The 
way of performing that is the same as described in section 3.1. 

It is worth mentioning at this point that apart from the two cases discussed above 
the method based on the formal solution (15) does not generate any other exact solution 
of ( l a ) .  The source of the inconvenience are the boundary conditions (6) restricting 
the space of y coordinates to the real half-axis [0, m) only. In such a case (15) is in 
general an exact solution of (sa) only for stationary siaies of the Hamiltonian Ha. The 
reader can clearly see that applying the procedure described in section 3.1 to, for 
example, a bouncer with L ( t )  different from that in (17). Then starting with the initial 
state q ( y ,  0), obeying boundary conditions on they  half-axis, we get from (15) a state 
at a later time t obeying (Sa) but not the same boundary conditions. Thus, it cannot 
be accepted as a proper soiution of (8a). 

The cases different from those in (17) and (26) need much more sophisticated 
treatment than the present one and we are not going to discuss this problem here. 

Our solutions (20) and (27)  obviously obey conditions (2) since Ai(m)=O and 
eigenvalues A, and A, are to be chosen in such a way that Ai = 0 for x = L(i).  As a 
final step we can easily check with the help of two formulae 

(27) ( :  

dZ 
- Ai[a(i)x + b( t)] = a*(ax+ b)Ai(ax+ b) 
dx2 (28) 

d 1 do db dAi(ax+b)  - Ai[a(f)x+b(t)] =- -x+- 
dt a (d f  d t )  dx 
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that (20) and (27) are solutions of ( la) .  The proof can easily be performed with the 
help of relations 13.6.25, 13.4.21 and 13.4.26 of [13]. 

4. The cut-off oscillator 

This model is represented by the b-equations of section 2. We are able to find exact 
solutions of ( Ib)  obeying boundary conditions (2) if a time-dependent frequency o ( t )  

of our oscillator and the function L(t), describing the movements of its boundary, are 
related in the equation 

i'+o2( t )L= 0. (30) 

From ( 8 6 )  we have now 

arp -h2a2rp I ih-=--+-mm ( t ) y  ~ ( y ,  t) .  
at 2m ay2 

From a methodological point of view two cases of (31) are worth distinguishing. 

Case A. o(t)=w,=constant>O. As follows from (30) the boundary of the oscillator 
can move here according to the functions L( t )  = A ,  sin wot, A, cos o0f or any of their 
linear combination. On the other hand, (31) can be solved with the method of separation 
of variables. 

It is quite clear that solutions of (31) vanishing at y = 0 and y = w can be expressed 
by the well known odd Hermite polynomials H2n+l. Therefore, an exact, normalized 
solution of ( Ib)  vanishing at x = L( 1 )  and x = 00 can be written at once as 

$"(X, t )  = [2'"u0(2n + I ) ! v q ' ~ Z  

x exp(& [ 2 i ( x - L ) + j o e  L2 dt,  - m i  j' 0 L2 dt,]] Y,(x, t )  (32) 

Y,,(x, t )  = exp[-ioo(2n +4)11 exp[-(x - L)2/2u~]H2.+l[(x- L)/uol 

where uo= (h/mwo)li2 and n =0,1,2,. . . ,CO. 

Case E.  o =o(t )>O.  If o is an arbitrary function of time, (31) and hence ( Ib )  can 
also be solved. Though the terms including the variables y and f do not separate we 
have at our disposal a number of methods [14, IS] developed for solving the problem 
of a harmonic oscillator with a time-dependent frequency. Due to the property of the 
Hermite polynomials that H2"+,(0) = O  we can use one of the methods. 

Referring the reader to the mentioned works, where several methods of solving 
(31) are described with full particulars, we give here just the final normalized solution 
of (1  b). It reads 

$m (x, t )  = [22" (2n + 1) ! ( n h j  mk)"2]-"2 

(33) 
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where the auxiliary functions T ( t )  and # ( r )  obey the equations 

‘i.+ w 2 (  t ) T =  C2/ T’ (34) 

i T 2 =  C (35) 

with C being a real positive constant. One can show then that the last two equations 
describe the amplitude T ( t )  and phase # ( I )  of  a classical time-dependent oscillator. 

Equation (34) has the form of the Milne-Pinney equation [16] and it can be related 
in some way [I71 to a Hill-like form [18]. 

Let us note that the constant C in (34) and (35) can be absorbed in T letting 
T+ C”’T and for w ( t )  = wo and the choice C = m we get from (34) and (35) T =  
( m / w , ) ” 2  and # = w , f .  Introducing these quantities into (33) we reduce it to the 
solution (32). 

5. Concluding remarks 

The present work extends the class [6] of exactly solvable quantum mechanical 
problems with time-dependent boundary conditions. The models proposed in section 
3.1 and 4 case A are solved for given particular functions L(t) whereas those in section 
3 2  ana 4 case B admit any choice of i i t j .  i n  each case, apart from ihe usuai ‘dynamicai‘ 
phase factors exp((-i/fi)A.t), exp((-i/fi)h,t), exp[-iwo(2n+$t] and exp[-i(2n+ 
$)5(t)] equations (20j, (27), (32) and (33) contain a number of additional phase factors 
generated by time-dependent boundaries. Clearly, they appear even for a non-adiabatic 
and non-cyclic evolution. 

The phases with no coordinate dependence involved produce only shifts to the 
above ‘dynamical’ phase factors. Thus, moving boundaries, being a source of an 
additional energy to the systems under consideration, modify the eigenvalues of the 
Hamiltonians Ha and Hb defined in (8). As a result, we arrive at an effective dynamical 
phase factor of the form exp[-(i/h)I &(I) df], k = 1,2,3,4.  

Except for this factor the four solutions contain some coordinate-dependent phases 
reflecting the influence of a moving boundary on the wavefunction of the quantum 
particle even though the particle has never been in the vicinity of the boundary. This 
is a non-local effect, not fully comprehensible so far [7]. 

A similar modification of the phases of wavefunctions has been observed during 
the passage of a particle through a bottleneck 1191 or a tube of a given length [20] or 
by the moving wall of an infinite square well 1211. 

A deeper understanding of the coordinate-dependent phases could probably be 
gained if they were related to the Berry phase and its generalizations. A modest step 
in that direction has recently been made [22]. 

As a final point we shall comment on possible applications of the solutions found. 
The functions (27), (32) and (33) can be used for studying the response of quantum 

systems to periodic perturbations. Though the classical counterparts of the three models 
do not lead to chaotic solutions, as we show elsewhere 171 such quantum models 
themselves can be a rich source of interesting effects. 

I’he most vaiuabie is the bouncer modei of section Xi. Ciassicaiiy, it is known to 
show all the types of behaviour from regular t o  chaotic. Note that (20) represents an 
exact wavefunction within a period of oscillation of the moving platform of the bouncer. 
The solution (20) can be used for the construction of an evolution matrix for one 
period with a part of the parabola (17) describing the platform’s move. A repeated 

- 
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application of the matrix (say, n times) will evolve the system through n periods. Thus, 
we have an exactly solvable quantum model that can be utilized for studying the 
properties of quantum systems of which classical mechanics can be chaotic. This is 
currently investigated. 

We should add for completeness that perhaps the first model found which allows 
one to calculate exactly the evolution matrix within one period was the Fermi-Ulam 
model with the function L(f)  = ( 1 + 2 c ~ t ) " ~  [23,24]. The same feature has its variant 
[6] with L( f )  = (at2 -2bf+ d)"' and ad - b2 = c2,  c > 0. Though for the latter case an 
exact wavefunction for one period is known [6], it is much more difficult to use than 
the solution of the bouncer model introduced here. 
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